Exercise 7.2.18

Solve the ODE

$$
\left(x^{2}-y^{2} e^{y / x}\right) d x+\left(x^{2}+x y\right) e^{y / x} d y=0
$$

Hint. Note that the quantity y / x in the exponents is of combined degree zero and does not affect the determination of homogeneity.

Solution

This ODE is not exact at the moment because

$$
\begin{aligned}
& \frac{\partial}{\partial y}\left(x^{2}-y^{2} e^{y / x}\right) \neq \frac{\partial}{\partial x}\left[\left(x^{2}+x y\right) e^{y / x}\right] \\
& -\frac{y e^{y / x}}{x}(2 x+y) \neq \frac{e^{y / x}}{x}\left(2 x^{2}-y^{2}\right)
\end{aligned}
$$

In order to make it so, multiply both sides of the ODE by an integrating factor I.

$$
\left(x^{2}-y^{2} e^{y / x}\right) I d x+\left(x^{2}+x y\right) e^{y / x} I d y=0
$$

Now that it is exact, we have

$$
\begin{aligned}
\frac{\partial}{\partial y}\left[\left(x^{2}-y^{2} e^{y / x}\right) I\right] & =\frac{\partial}{\partial x}\left[\left(x^{2}+x y\right) e^{y / x} I\right] \\
-\frac{y e^{y / x}}{x}(2 x+y) I+\left(x^{2}-y^{2} e^{y / x}\right) \frac{\partial I}{\partial y} & =\frac{e^{y / x}}{x}\left(2 x^{2}-y^{2}\right) I+\left(x^{2}+x y\right) e^{y / x} \frac{\partial I}{\partial x} .
\end{aligned}
$$

To solve for a simple integrating factor, assume that it's only a function of $x: I=I(x)$.

$$
-\frac{y e^{y / x}}{x}(2 x+y) I=\frac{e^{y / x}}{x}\left(2 x^{2}-y^{2}\right) I+\left(x^{2}+x y\right) e^{y / x} \frac{d I}{d x}
$$

Divide both sides by $e^{y / x}$.

$$
\begin{gathered}
-\frac{1}{x}\left(2 x y+y^{2}\right) I=\frac{1}{x}\left(2 x^{2}-y^{2}\right) I+\left(x^{2}+x y\right) \frac{d I}{d x} \\
0=\frac{1}{x}\left(2 x^{2}+2 x y\right) I+\left(x^{2}+x y\right) \frac{d I}{d x} \\
0=2(x+y) I+x(x+y) \frac{d I}{d x}
\end{gathered}
$$

Divide both sides by $x+y$.

$$
\begin{gathered}
0=2 I+x \frac{d I}{d x} \\
0=2+x \frac{\frac{d I}{d x}}{I} \\
\frac{\frac{d I}{d x}}{I}=-\frac{2}{x}
\end{gathered}
$$

The left side can be written as the derivative of a logarithm by the chain rule.

$$
\frac{d}{d x} \ln |I|=-\frac{2}{x}
$$

Integrate both sides with respect to x.

$$
\begin{aligned}
\ln |I| & =-2 \ln |x|+C_{1} \\
& =\ln x^{-2}+C_{1}
\end{aligned}
$$

Exponentiate both sides.

$$
\begin{aligned}
|I| & =e^{\ln x^{-2}+C_{1}} \\
& =e^{\ln x^{-2}} e^{C_{1}} \\
& =x^{-2} e^{C_{1}}
\end{aligned}
$$

Remove the absolute value sign on the left by placing \pm on the right.

$$
I(x)= \pm e^{C_{1}} x^{-2}
$$

Use a new constant C_{2} for $\pm e^{C_{1}}$.

$$
I(x)=C_{2} x^{-2}
$$

Any integrating factor will do, so choose $C_{2}=1$ for the simplest.

$$
I(y)=x^{-2}
$$

Now that the integrating factor is known, the original ODE can be solved.

$$
\left(x^{2}-y^{2} e^{y / x}\right) d x+\left(x^{2}+x y\right) e^{y / x} d y=0
$$

Multiply both sides by x^{-2}.

$$
\begin{equation*}
\left(1-\frac{y^{2}}{x^{2}} e^{y / x}\right) d x+\left(1+\frac{y}{x}\right) e^{y / x} d y=0 \tag{1}
\end{equation*}
$$

Since it's exact now, there exists a potential function $\varphi=\varphi(x, y)$ that satisfies

$$
\begin{align*}
& \frac{\partial \varphi}{\partial x}=1-\frac{y^{2}}{x^{2}} e^{y / x} \tag{2}\\
& \frac{\partial \varphi}{\partial y}=\left(1+\frac{y}{x}\right) e^{y / x} \tag{3}
\end{align*}
$$

As a result, equation (1) can be written as

$$
\frac{\partial \varphi}{\partial x} d x+\frac{\partial \varphi}{\partial y} d y=0
$$

The left side is how the differential of φ is defined.

$$
d \varphi=0
$$

Integrate both sides.

$$
\varphi(x, y)=C_{3}
$$

The general solution to the ODE is found then by solving equations (2) and (3) for φ. Integrate both sides of equation (3) partially with respect to y to get φ.

$$
\varphi(x, y)=y e^{y / x}+f(x)
$$

Differentiate both sides with respect to x.

$$
\frac{\partial \varphi}{\partial x}=-\frac{y^{2}}{x^{2}} e^{y / x}+f^{\prime}(x)
$$

Comparing this formula for $\partial \varphi / \partial x$ with equation (2), we see that

$$
f^{\prime}(x)=1 .
$$

Integrate both sides with respect to x.

$$
f(x)=x+C_{4}
$$

Therefore, the potential function is

$$
\varphi(x, y)=y e^{y / x}+x+C_{4},
$$

and the general solution to the ODE is

$$
y e^{y / x}+x=A
$$

where A is a new constant used for $C_{3}-C_{4}$.

